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Objective

How to choose the right kernel functions k(·, ·)
and g(·, ·) so as to perform better structured pre-
diction?

Introduction

• In structured prediction we learn a prediction
function f : X → Y from an input domain X to
an output domain Y .

•We formulate an auxiliary evaluation function
h : X × Y → R, such that,

y∗ = f (x) = arg max
y∈Y

h(x, y) (1)

•Kernel methods [3] define kernel maps
k(x, ·) : X → K and g(y, ·) : Y → G jointly on
input and outputs.

•Structured data is high dimensional and highly
structured, and the choice of kernel functions is
difficult so can we learn both input and output
kernel functions simultaneously.

•Twin Gaussian Processes [2] as an example model
input/output using Gaussian Process prior with
covariance functions represented by kernel
matrices K and G.

Polynomial Kernel Transformation

•Theorem [FitzGerald et al. (1995) [1]]: If there
exists a continuous function φ : R→ R, such
that, [K′]i,j = φ([K]i,j) then, K′ is positive
definite for any SPD matrix K, if and only if, φ(·)
it is real entire and of the form below,

φ(t) =
∞∑
i=0
αit

i, with αi ≥ 0 for all i ≥ 0. (2)

•Example: The exponential function φ(t) = et,
φ(t) = et = 1 + t

1 + t2

2! + t3

3! + . . . , with αi = 1
i!

Twin Kernel Transfomations

Algorithm

•The statistical dependence between two feature
spaces X and Y is given by,
HSIC(P (x,y),K,G) := ||Mx,y||2HS where,
Mx,y := Ex,y∈P (x,y)[(k(x, ·)−µx)⊗ (g(y, ·)−µy)]

•Empirically, HSIC(X × Y,K,G) =
(m− 1)−2trace(HKHGH) where
[H]i,j := δij −m−1

•After approximating and adding regularization
(αi, βj) we get the final problem as,

maximize
d1∑
i=0

d2∑
j=0

αiβjCi,j (3)

subject to, ||α||2 = 1, ||β||2 = 1,α ≥ 0,β ≥ 0
where [C]i,j = HSIC(K(i),G(j)).

•Theorem: The solution (α∗,β∗) to the above
optimization problem is given by, the first left
and right singular vectors of the C-matrix.

•For d1 = d2 = 1, φ(t) = t and ψ(t) = t
corresponds to no mapping.

Modified Twin Gaussian Processes

•TGP with KL-Divergence
y∗ = arg min

y
DKL((ψ(GY ∪y)||φ(KX∪x))

•TGP with HSIC:
y∗ = arg max

y
HSIC((ψ(GY ∪y), φ(KX∪x))

Experiments

•Empirical performance measure:

% Gain =
1−

Error(mapping)

Error(no mapping)

× 100

•We use RBF kernels on the input and output,
k(xi,xj) = e(−γx||xi−xj||2), g(yi,yj) = e(−γy||yi−yj||2)

•S-Shape regression: 1d input-output problem,
r ∈ (0, 1), r = x + 0.3sin(2xπ) + ε, with
ε ∼ N (0, 0.05), multivalued, discontinuous, noisy.
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(a) HSIC (d1, d2) = (1, 1)
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(b) HSIC (d1, d2) = (11, 11)
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(c) KL-Div (d1, d2) = (1, 1)
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(d) KL-Div (d1, d2) = (1, 11)

Figure: Regression on S-Shape dataset with HOTGP
(Fig.1c-1d) and HOHSIC (Fig.1a-1b)
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• USPS Handwritten Digit Reconstruction:
Approach MAE Approach MAE
NN 0.341 KRR 0.250
SVR 0.250 KDE 0.260
SOARkrr 0.233 SOARsvr 0.230
HSIC
(wo/map)

0.3399 KL-Div
(wo/map)

0.21508

HSIC
(w/map)

0.3327 KL-Div
(w/map)

0.21084

% Gain 2.4842 % % Gain 1.9924 %
Table: % Gain over for the KL-Div. and HSIC criterion.

• Poser: Synthetic human motion sequences; Input:
shape descriptor, Output: x, y, z joint angles.

Criterion - (d1, d2) % Gain
KL-Divergence - (1, 11) 6.39 %
HSIC - (11, 11) 1.2613 %

Table: %Gain w/ and w/o mapping for KL-Div. and HSIC.
• Human Eva-I : Human motion sequences; Input:

HoG features Output: x, y, z joint positions.
Features Crit. wo/map w/ map Gain %

HoG
(C1C2C3)

KL-Div 45.1729 42.8783 5.0796 %
HSIC 171.4085 171.3766 0.018613 %

HoG
(C1)

KL-Div 34.2885 33.4262 2.5147 %
HSIC 171.4085 171.3769 0.018427 %

HoG
(C2)

KL-Div 31.9928 31.5792 1.2928 %
HSIC 171.4085 171.3755 0.019237 %

HoG
(C3)

KL-Div 30.9279 30.4928 1.4067 %
HSIC 171.4085 171.3762 0.018835 %

Table: %Gain for KL-Div. (1, 11) and HSIC (11, 11)

Conclusion

We propose a novel, efficient and effective method
for learning the kernels using polynomial kernel
transformations for structured prediction problems.
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