

RUTGERS

Introduction

- In *structured prediction* we learn a prediction function $f: \mathcal{X} \to \mathcal{Y}$ from an input domain \mathcal{X} to an output domain \mathcal{Y} .
- We formulate an *auxiliary evaluation function* $h: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, such that,

$$y^* = f(x) = \arg\max_{y \in \mathcal{Y}} h(x, y) \tag{1}$$

- Kernel methods [3] define kernel maps $k(x, \cdot) \colon \mathcal{X} \to \mathcal{K} \text{ and } g(y, \cdot) \colon \mathcal{Y} \to \mathcal{G} \text{ jointly on}$ input and outputs.
- Structured data is high dimensional and highly structured, and the choice of kernel functions is difficult so can we *learn both input and output* kernel functions simultaneously.
- Twin Gaussian Processes [2] as an example model input/output using Gaussian Process prior with covariance functions represented by kernel matrices \mathbf{K} and \mathbf{G} .

Polynomial Kernel Transformation

• Theorem [FitzGerald *et al.* (1995) [1]]: If there exists a continuous function $\phi \colon \mathbb{R} \to \mathbb{R}$, such that, $[\mathbf{K'}]_{i,j} = \phi([\mathbf{K}]_{i,j})$ then, $\mathbf{K'}$ is positive definite for any SPD matrix **K**, if and only if, $\phi(\cdot)$ it is real entire and of the form below,

$$\phi(t) = \sum_{i=0}^{\infty} \alpha_i t^i$$
, with $\alpha_i \ge 0$ for all $i \ge 0$. (2)

• *Example*: The exponential function $\phi(t) = e^t$, $\phi(t) = e^t = 1 + \frac{t}{1} + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots$, with $\alpha_i = \frac{1}{i!}$

- The *statistical dependence* between two feature spaces \mathcal{X} and \mathcal{Y} is given by,
- After *approximating* and *adding regularization* (α_i, β_j) we get the final problem as,

maximize
$$\sum_{i=0}^{d_1} \sum_{j=0}^{d_2} \alpha_i \beta_j \mathbf{C}_{i,j}$$
(3)
bject to, $||\boldsymbol{\alpha}||_2 = 1, ||\boldsymbol{\beta}||_2 = 1, \boldsymbol{\alpha} \ge 0, \boldsymbol{\beta} \ge 0$

- and right singular vectors of the C-matrix.
- For $d_1 = d_2 = 1$, $\phi(t) = t$ and $\psi(t) = t$

Modified Twin Gaussian Processes

• TGP with KL-Divergence

• **TGP** with \overline{HSIC} :

Approach	MAE	Approach	MAE
NN	0.341	KRR	0.250
SVR	0.250	KDE	0.260
$SOAR_{krr}$	0.233	$SOAR_{svr}$	0.230
HSIC	0.3399	KL-Div	0.21508
(wo/map)		(wo/map)	
HSIC	0.3327	KL-Div	0.21084
(w/map)		(w/map)	
% Gain	2.4842 %	% Gain	1.9924 %

Table: % Gain over for the KL-Div. and HSIC criterion.

Criterion - (d_1, d_2)	% Gain
KL-Divergence - $(1, 11)$	6.39 %
HSIC - (11, 11)	1.2613 %

Table: %Gain w/ and w/o mapping for KL-Div. and HSIC. • Human Eva-I : Human motion sequences; Input:

Features	Crit.	wo/map	w/ map	Gain %
HoG	KL-Div	45.1729	42.8783	5.0796 %
C1C2C3)	HSIC	171.4085	171.3766	0.018613 %
HoG	KL-Div	34.2885	33.4262	2.5147 %
(C1)	HSIC	171.4085	171.3769	0.018427 %
HoG	KL-Div	31.9928	31.5792	1.2928 %
(C2)	HSIC	171.4085	171.3755	0.019237 %
HoG	KL-Div	30.9279	30.4928	1.4067 %
(C3)	HSIC	171.4085	171.3762	0.018835 %
Table: %	Gain for	KL-Div. (1.	(11) and HS	SIC (11, 11)

We propose a novel, efficient and effective method for learning the kernels using polynomial kernel transformations for structured prediction problems.

- families of positive semidefinite matrices. LAA, '95.
- L. Bo and C. Sminchisescu. Twin Gaussian Processes
- Nowozin, S. et al. Structured Learning and Prediction