
Recitation sample problems

David Menendez (davemm@cs.rutgers.edu)

Some worked examples I wrote up for past recitations.

1 Mathematical Induction

Unfortunately, all the examples I’ve done in class are from the book, and we’re not supposed to
post answers on-line. So here’s a proof by induction of a well-known theorem:

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

Proof: By induction.

Basis step: We need to show that 1 = 1(1+1)
2 . 1(1+1)

2 = 2
2 = 1.

Inductive step: Assume that 1 + 2 + · · · + k = k(k+1)
2 for an arbitrary integer k ≥ 1.1 We need to

show that 1 + 2 + · · ·+ (k + 1) = (k+1)(k+2)
2 .

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1) by our assumption

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

This completes the inductive step.

Thus, we conclude that 1 + · · ·+ n = n(n+1)
2 for all integers n ≥ 1.

1.1 Strong induction

Let’s say we need to write a simple program to raise an integer to a power. That is, for some m
and n, we need to calculate mn. The easiest way to do this is to multiply m by itself n− 1 times,

1This is the inductive hypothesis.
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so that m4 = m ·m ·m ·m. I claim we can use fewer multiplications by setting m2 = m ·m and
m4 = m2 ·m2 and so forth.

In general,

mn =

{
mk ·mk if n = 2k

mk ·mk ·m if n = 2k + 1

So calculating mn requires calculating mbn/2c and then performing 1 or 2 additional multiplica-
tions.

Let’s use strong induction to prove that this method requires fewer than n − 1 multiplications to
calculate mn for n ≥ 4.

Hypothesis2: For all integers n ≥ 4, mn can be calculated with fewer than n − 1 multiplica-
tions.

Basis step: To find m4, we first calculate m2 = m · m and then m4 = m2 · m2 This requires 2
multiplications, which is fewer than 4 - 1 = 3.

Inductive step: Let k be an arbitrary integer greater than or equal to 4. Assume that we can
calculate mi in fewer than i multiplications for all i such that 4 ≤ i ≤ k. We need to show that
we can calculate mk+1 with fewer than k multiplications. Because our method involves calculating
mb(k+1)/2c, we will need to consider whether k+ 1 is odd or even, and separately consider the cases
where b(k + 1)/2c < 4:

• Case 1: k = 4. We will calculate m5 = m2 ·m2 ·m. Since finding m2 requires 1 multiplication,
we will need 3 to calculate m5.

• Case 2: k = 5. We will calculate m6 = m3 ·m3. Since finding m3 requires 2 multiplications,
we will need 3 to calculate m6.

• Case 3: k = 6. We will calculate m7 = m3 ·m3 ·m. Since finding m3 requires 2 multiplications,
we will need 4 to calculate m7.

• Case 4: k ≥ 7. In this case, b(k + 1)/2c ≥ 4, so we may use the inductive hypothesis. We
will consider two sub-cases, where k + 1 is even or odd:

– Case 4.1: k + 1 is even. Since k + 1 is even, there must be an integer j such that
k + 1 = 2j. Therefore, we will calculate mk+1 = mj ·mj . By the inductive hypothesis,
we can calculate mj in fewer than j − 1 multiplications. Therefore, we need fewer than
j multiplications to calculate mk+1.

Since k ≥ 7, j < k and therefore mk+1 can be calculated in fewer than k multiplications.

– Case 4.2: k + 1 is odd. Since k + 1 is odd, there must be an integer j such that
k + 1 = 2j + 1. Therefore, we will calculate mk+1 = mj · mj · m. By the inductive
hypothesis, we can calculate mj in fewer than j − 1 multiplications. Therefore, we need
fewer than j + 1 multiplications to calculate mk+1.

2This is not the inductive hypothesis!
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Since k ≥ 7, j + 1 < k, and therefore mk+1 can be calculated in fewer than k multipli-
cations.

All the cases show that mk+1 can be calculated in fewer than k multiplications. This completes the
inductive step.

Thus, by strong induction, mn can be calculated with fewer than n − 1 multiplications for all
integers n ≥ 4.

2 Natural Deduction

2.1 One problem three ways

Normally, if you needed to show something like ¬(P ∨ Q) → (¬P ∧ ¬Q), you would simply note
that this is an obvious consequence of DeMorgan’s laws and that would be sufficient. But since
we’re learning how to prove things, here are two less-implicit proofs.

First, using logical equivalences:

¬(P ∨Q)→ (¬P ∧ ¬Q) ≡ (¬P ∧ ¬Q)→ (¬P ∧ ¬Q) DeMorgan’s Laws

≡ ¬(¬P ∧ ¬Q) ∨ (¬P ∧ ¬Q) → Equivalence

≡ True Negation

Here, we used DeMorgan’s laws to replace ¬(P∨Q) with (¬P∧¬Q), then we rewrote the implication
into a disjunction, which was trivially true because one term was the negation of the other.

Next, using natural deduction.

1 ¬(P ∨Q)

2 P

3 P ∨Q ∨I 2

4 False False Intro 1,3

5 ¬P ¬I 2,4

6 Q

7 P ∨Q ∨I 6

8 False False Intro 1,7

9 ¬Q ¬I 6,8

10 ¬P ∧ ¬Q ∧I 5,9

11 ¬(P ∨Q)→ (¬P ∧ ¬Q) →I 1,10
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We want to show an implication, so we assume the premise (1) and attempt to show the consequence
(10). Since the consequence is a conjunction, we need to show both parts (5,9). These are negations,
so we can prove them by assuming the opposite (2,6) and showing a contradiction (3 and 7 contradict
1).

2.2 Some more examples

(¬P ∨ ¬Q)→ ¬(P ∨Q):

1 ¬P ∨ ¬Q

2 P ∧Q

3 ¬P

4 P ∧E 2

5 False False Intro 3,4

6 ¬Q

7 Q ∧E 2

8 False False Intro 6,7

9 False ∨E 1,5,8

10 ¬(P ∧Q) ¬I 2,9

11 (¬P ∨ ¬Q)→ ¬(P ∧Q) →I 1,10

Here, since we are trying to conclude something from a disjunction, we have to use or-elimination
by showing that we can reach the same conclusion (in this case a contradiction) from both terms.
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((P ∨Q) ∧R)→ ((P ∧R) ∨ (Q ∧R)):

1 (P ∨Q) ∧R

2 R ∧E 1

3 P ∨Q ∧E 1

4 P

5 P ∧R ∧I 2,4

6 (P ∧R) ∨ (P ∧Q) ∨I 5

7 Q

8 Q ∧R ∧I 2,7

9 (P ∧R) ∨ (Q ∧R) ∨I 8

10 (P ∧R) ∨ (Q ∧R) ∨E 3,6,9

11 ((P ∨Q) ∧R)→ ((P ∧R) ∨ (Q ∧R)) →I 1,11

((P ∧Q) ∨R)→ ((P ∨R) ∧ (Q ∨R)):

1 (P ∧Q) ∨R

2 P ∧Q

3 P ∧E 2

4 P ∨R ∨I 3

5 Q ∧E 2

6 Q ∨R ∨I 5

7 (P ∨R) ∧ (Q ∨R) ∨I 4,6

8 R

9 P ∨R ∨I 8

10 Q ∨R ∨I 8

11 (P ∨R) ∧ (Q ∨R) ∧I 9,10

12 (P ∨R)(Q ∨R) ∨E 1,7,11

13 ((P ∧Q) ∨R)→ ((P ∨R) ∧ (Q ∨R)) →1,12
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P → (Q ∨R), (P ∧Q)→ R ` P → R:

1 P → (Q ∨R) Premise

2 (P ∧Q)→ R Premise

3 P

4 Q ∨R →E 1,3

5 Q

6 P ∧Q ∧I 3,5

7 R →E 2,6

8 R

9 R It 8

10 R ∨E 4,7,9

11 P → R →I 3,10
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