Recitation sample problems

David Menendez (davemm@cs.rutgers.edu)

Some worked examples I wrote up for past recitations.

1 Mathematical Induction

Unfortunately, all the examples I’ve done in class are from the book, and we’re not supposed to
post answers on-line. So here’s a proof by induction of a well-known theorem:

n(n+1)

L4243+ 4n=——

Proof: By induction.

Basis step: We need to show that 1 = w w = % =1.

Inductive step: Assume that 1 +2+---+k = k(kTH) for an arbitrary integer k£ > 1. We need to
show that 1+ 2+ - + (k + 1) = EED0H2),

k(k+1
1+2+--~+k+(k+1)=%+(kj+1) by our assumption
_k(k+1)+2(k+1)
B 2
(k+1)(k+2)
N 2
This completes the inductive step.
Thus, we conclude that 1 + -+ +n = % for all integers n > 1.

1.1 Strong induction

Let’s say we need to write a simple program to raise an integer to a power. That is, for some m
and n, we need to calculate m™. The easiest way to do this is to multiply m by itself n — 1 times,

IThis is the inductive hypothesis.



so that m* = m -m-m-m. I claim we can use fewer multiplications by setting m? = m - m and

m* = m? - m? and so forth.

In general,

m" =
mk-mfom ifn=2k+1

{ mF-mF  ifn=2k

So calculating m™ requires calculating m!™/2) and then performing 1 or 2 additional multiplica-
tions.

Let’s use strong induction to prove that this method requires fewer than n — 1 multiplications to
calculate m™ for n > 4.

Hypothesis®: For all integers n > 4, m™ can be calculated with fewer than n — 1 multiplica-
tions.

Basis step: To find m?, we first calculate m? = m - m and then m* = m? - m? This requires 2

multiplications, which is fewer than 4 - 1 = 3.

Inductive step: Let k be an arbitrary integer greater than or equal to 4. Assume that we can
calculate m? in fewer than ¢ multiplications for all ¢ such that 4 < ¢ < k. We need to show that
we can calculate mFt1 with fewer than k& multiplications. Because our method involves calculating
mlE+1D/2] we will need to consider whether &+ 1 is odd or even, and separately consider the cases
where [(k+1)/2] < 4:

o Case 1: k = 4. We will calculate m® = m?-m?-m. Since finding m? requires 1 multiplication,

we will need 3 to calculate m5.

e Case 2: k =5. We will calculate m6 = m3 - m3. Since finding m? requires 2 multiplications,
we will need 3 to calculate m®.

e Case 3: k= 6. We will calculate m” = m3-m?-m. Since finding m? requires 2 multiplications,

we will need 4 to calculate m”.

e Case 4: k > 7. In this case, [(k+ 1)/2] > 4, so we may use the inductive hypothesis. We
will consider two sub-cases, where k + 1 is even or odd:

— Case 4.1: k41 is even. Since k + 1 is even, there must be an integer j such that
k 4+ 1 = 2j. Therefore, we will calculate mF+! = m7 - m7. By the inductive hypothesis,
we can calculate m? in fewer than j — 1 multiplications. Therefore, we need fewer than
5 multiplications to calculate m*+1.

Since k > 7, j < k and therefore m**! can be calculated in fewer than k& multiplications.

— Case 4.2: k+11is odd. Since k 4+ 1 is odd, there must be an integer j such that
k+1 = 2j 4+ 1. Therefore, we will calculate m**t = m7 - m7 - m. By the inductive
hypothesis, we can calculate m’ in fewer than j — 1 multiplications. Therefore, we need
fewer than j + 1 multiplications to calculate m**1.

2This is not the inductive hypothesis!



Since k > 7, j + 1 < k, and therefore m**! can be calculated in fewer than k multipli-
cations.

All the cases show that m*t! can be calculated in fewer than k& multiplications. This completes the
inductive step.

Thus, by strong induction, m™ can be calculated with fewer than n — 1 multiplications for all
integers n > 4.

2 Natural Deduction

2.1 One problem three ways

Normally, if you needed to show something like —=(P V Q) — (=P A =Q), you would simply note
that this is an obvious consequence of DeMorgan’s laws and that would be sufficient. But since
we’re learning how to prove things, here are two less-implicit proofs.

First, using logical equivalences:

—(PVQ)—= (mPA-Q)=(=PA-Q)— (=P A-Q) DeMorgan’s Laws
=(=PA=Q)V (=P A=Q) — Equivalence
= True Negation

Here, we used DeMorgan’s laws to replace =(PV Q) with (-PA—Q), then we rewrote the implication
into a disjunction, which was trivially true because one term was the negation of the other.

Next, using natural deduction.

1| ~(PVQ)
2 [ | P
35 || PvQ VI 2
4 False False Intro 1,3
5 -P 124
6 Q
7 || Pvo VI 6
8 False False Intro 1,7
9 -Q -16,8

10 -PA-Q AL 5,9

11 ~(PVQ)— (-PA-Q) —11,10



We want to show an implication, so we assume the premise (1) and attempt to show the consequence
(10). Since the consequence is a conjunction, we need to show both parts (5,9). These are negations,
so we can prove them by assuming the opposite (2,6) and showing a contradiction (3 and 7 contradict
1).

2.2 Some more examples

(~PV=Q) = ~(PV Q)

1 -PV-Q
2> || PAQ
3 o -P
4 7 AE 2
) False False Intro 3,4
6 -Q
7 0 AE 2
8 False False Intro 6,7
9 False VE 1,5,8
10 -(PAQ) -129
11 (=PV-Q)—=~(PAQ) —11,10

Here, since we are trying to conclude something from a disjunction, we have to use or-elimination
by showing that we can reach the same conclusion (in this case a contradiction) from both terms.



(PVQ)AR)—= (PAR)V(QAR)):
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(PVQ)AR) = (PAR)V(QAR))

(PANQ)VR)— ((PVR)AN(QVR)):
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AL 9,10
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—1,12



P—-(QVR),(PNQ)— RFP— R:
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—1 3,10



