Answers for Quiz 5

David Menendez (davemm@cs.rutgers.edu)

1. 1.
$$1^{3} = \frac{1^{2}(1+1)^{2}}{4}$$

2. $\frac{1^{2}(1+1)^{2}}{4} = \frac{4}{4} = 1 = 1^{3}$
3. For an arbitrary $m \ge 1$, $1^{3} + 2^{3} + \dots + m^{3} = \frac{m^{2}(m+1)^{2}}{4}$
4. $1^{3} + 2^{3} + \dots + (m+1)^{3} = \frac{(m+1)^{2}(m+2)^{2}}{4}$
5. $1^{3} + 2^{3} + \dots + m^{3} + (m+1)^{3} = \frac{m^{2}(m+1)^{2}}{4} + (m+1)^{2}(m+1)$
 $= (m+1)^{2} \left(\frac{m^{2}}{4} + m + 1\right)$
 $= (m+1)^{2} \left(\frac{m^{2} + 4m + 4}{4}\right)$
 $= \frac{(m+1)^{2}(m+2)^{2}}{4}$

6. Suppose there is a non-empty set S of positive integers for which the equality does not hold. By well ordering, S must have a least element, k. We proved P(1), so $k \neq 1$. Therefore, there must be a positive integer $j \notin S$ such that j + 1 = k. But the inductive step shows that $P(j) \rightarrow P(j+1)$, and therefore $k \notin S$. This produces a contradiction, so S must be empty and the equality must hold for all positive integers.

Alternate answer: We showed P(1), and by the inductive step $P(1) \rightarrow P(2)$, and $P(2) \rightarrow P(3)$, and so forth.

$$2.\ 1.\ 6$$

- $2.\ 12$
- $3.\ 20$
- 4. $n^2 + n$

Substitute your own formula for $n^2 + n$ in the answers below.

- 1. $2 + 4 + 6 + \dots + 2n = n^2 + n$
- 2. For an arbitrary $k \ge 1, 2+4+\cdots+2k = k^2+k$
- 3. $2+4+\cdots+2(k+1)=(k+1)^2+(k+1)$