Answers for Quiz 4

David Menendez

1. 1.
$$(p \rightarrow q) \rightarrow r \vdash (q \rightarrow (p \rightarrow r))$$

2. $(p \rightarrow q) \vdash ((q \rightarrow r) \rightarrow (p \rightarrow r))$

1	$p \rightarrow q$	
2	$q \to r$	Н
3	p	Н
4	q	$\rightarrow E$ 1,3
5	r	$\rightarrow E$ 2,4
6	$p \rightarrow r$	\rightarrow I 3,5
7	$(q \to r) \to (p \to r)$	\rightarrow I 2,6

- 2. In a proof by *contradiction*, we show that the negation of the hypothesis leads to a contradiction. To prove $p \to q$, we would show $p \land \neg q \to \text{False}$.
 - In a proof by *contraposition*, we would show that the negation of the conclusion leads to the negation of the premise. To prove $p \to q$, we would show $\neg q \to \neg p$.
- 3. (a) Given an integer n, we want to show that $3n^2 + n + 14$ is even. Proof by cases:
 - Case 1: n is even. For n to be even, there must exist an integer k such that n = 2k. By substitution:

$$3n^{2} + n + 14 = 3(2k)^{2} + (2k) + 14$$
$$= 12k^{2} + 2k + 14$$
$$= 2(6k^{2} + k + 7)$$

We have shown $3n^2 + n + 14$ is twice some other integer, therefore it must be even.

• Case 2: n is odd. For n to be odd, there must exist an integer k such that n = 2k + 1. By substitution:

$$3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$$

= 3(4k² + 4k + 1) + 2k + 15
= 12k² + 12k + 3 + 2k + 15
= 12k² + 14k + 18
= 2(6k² + 7k + 9)

We have shown $3n^2 + n + 14$ is twice some other integer, therefore it must be even.

We have shown that $3n^2 + n + 14$ must be even if n is even or odd. Since every integer must be even or odd, we have shown that $3n^2 + n + 14$ is even for any integer.

(b) We want to show that $x^2 - y^2 = 10$ has no positive integer solutions.

Proof by contradiction: Assume there are positive integers x and y such that $x^2 - y^2 = 10$. We can show that $x^2 - y^2 = (x + y)(x - y)$. Let a = x + y and b = x - y. Because x and y are positive integers, a must also be a positive integer. Similarly, b must be an integer, and b must be positive because ab = 10.

There are only four positive integers which divide evenly into 10: 1, 2, 5, and 10. We will proceed by cases:

• Case 1: a = 1 and b = 10. We get the equations,

$$\begin{aligned} x + y &= 1\\ x - y &= 10 \end{aligned}$$

Subtracting them, we get 2y = -9 and therefore y = -9/2. This contradicts the assumption that y is a positive integer.

- Case 2: a = 2 and b = 5. Subtracting the equations gives 2y = -3, and therefore y = -3/2. This contradicts the assumption that y is a positive integer.
- Case 3: a = 5 and b = 2. Subtracting the equations gives 2y = 3, and therefore y = 3/2. This contradicts the assumption that y is a positive integer.
- Case 4: a = 10 and b = 1. Subtracting the equations gives 2y = 9, and therefore y = 9/2. This contradicts the assumption that y is a positive integer.

Since every case leads to a contradiction, we conclude that our hypothesis that x and y are positive integers such that $x^2 - y^2 = 10$ is false. Therefore, no such positive integers exist.