Answers for Quiz 4

David Menendez

1. 2. $(p \rightarrow q) \rightarrow r \vdash(q \rightarrow(p \rightarrow r))$

1	$(p \rightarrow q) \rightarrow r$	
2	q	H
3	p	H
4	$q \rightarrow r$	\rightarrow E 1,3
5	r	\rightarrow E 2,4
6	$p \rightarrow r$	$\rightarrow \mathrm{I} 3,5$
7	$q \rightarrow(p \rightarrow r)$	$\rightarrow \mathrm{I} 2,6$

2. $(p \rightarrow q) \vdash((q \rightarrow r) \rightarrow(p \rightarrow r))$

1	$p \rightarrow q$	
2	$q \rightarrow r$	H
3	p	H
4	q	\rightarrow E 1,3
5	r	\rightarrow E 2,4
6	$p \rightarrow r$	$\rightarrow \mathrm{I} 3,5$
7	$(q \rightarrow r) \rightarrow(p \rightarrow r)$	$\rightarrow \mathrm{I} 2,6$

2. - In a proof by contradiction, we show that the negation of the hypothesis leads to a contradiction. To prove $p \rightarrow q$, we would show $p \wedge \neg q \rightarrow$ False.

- In a proof by contraposition, we would show that the negation of the conclusion leads to the negation of the premise. To prove $p \rightarrow q$, we would show $\neg q \rightarrow \neg p$.

3. (a) Given an integer n, we want to show that $3 n^{2}+n+14$ is even.

Proof by cases:

- Case 1: n is even. For n to be even, there must exist an integer k such that $n=2 k$. By substitution:

$$
\begin{aligned}
3 n^{2}+n+14 & =3(2 k)^{2}+(2 k)+14 \\
& =12 k^{2}+2 k+14 \\
& =2\left(6 k^{2}+k+7\right)
\end{aligned}
$$

We have shown $3 n^{2}+n+14$ is twice some other integer, therefore it must be even.

- Case 2: n is odd. For n to be odd, there must exist an integer k such that $n=2 k+1$. By substitution:

$$
\begin{aligned}
3 n^{2}+n+14 & =3(2 k+1)^{2}+(2 k+1)+14 \\
& =3\left(4 k^{2}+4 k+1\right)+2 k+15 \\
& =12 k^{2}+12 k+3+2 k+15 \\
& =12 k^{2}+14 k+18 \\
& =2\left(6 k^{2}+7 k+9\right)
\end{aligned}
$$

We have shown $3 n^{2}+n+14$ is twice some other integer, therefore it must be even.
We have shown that $3 n^{2}+n+14$ must be even if n is even or odd. Since every integer must be even or odd, we have shown that $3 n^{2}+n+14$ is even for any integer.
(b) We want to show that $x^{2}-y^{2}=10$ has no positive integer solutions.

Proof by contradiction: Assume there are positive integers x and y such that $x^{2}-y^{2}=10$. We can show that $x^{2}-y^{2}=(x+y)(x-y)$. Let $a=x+y$ and $b=x-y$. Because x and y are positive integers, a must also be a positive integer. Similarly, b must be an integer, and b must be positive because $a b=10$.
There are only four positive integers which divide evenly into $10: 1,2,5$, and 10 . We will proceed by cases:

- Case 1: $a=1$ and $b=10$. We get the equations,

$$
\begin{aligned}
& x+y=1 \\
& x-y=10
\end{aligned}
$$

Subtracting them, we get $2 y=-9$ and therefore $y=-9 / 2$. This contradicts the assumption that y is a positive integer.

- Case 2: $a=2$ and $b=5$. Subtracting the equations gives $2 y=-3$, and therefore $y=-3 / 2$. This contradicts the assumption that y is a positive integer.
- Case 3: $a=5$ and $b=2$. Subtracting the equations gives $2 y=3$, and therefore $y=3 / 2$. This contradicts the assumption that y is a positive integer.
- Case 4: $a=10$ and $b=1$. Subtracting the equations gives $2 y=9$, and therefore $y=9 / 2$. This contradicts the assumption that y is a positive integer.
Since every case leads to a contradiction, we conclude that our hypothesis that x and y are positive integers such that $x^{2}-y^{2}=10$ is false. Therefore, no such positive integers exist.

