CS205- Summer 2012
Quiz 5
Name: \qquad

Show all work clearly and in order, and circle your final answers. Justify your answers algebraically whenever possible; when you do use your calculator, sketch all relevant graphs and write down all relevant mathematics. You have 15 minutes to take this 15 point quiz.

1. (10 points) Let $P(n)$ be the statement that $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
2. What is the statement $\mathrm{P}(1)$?
\square
3. Show that $\mathrm{P}(1)$ is true, completing your basis step.
\square
4. What is the inductive hypothesis?
\square
5. What do you need to prove in the inductive step ?
\square
6. Complete the inductive step.
\square
7. Explain in words why these steps show that this formula is true whenever n is a positive integer.
8. (5 points) Conjecture a formula for the sum of of first n even integers.
9. $2+4=$ \qquad
10. $2+4+6=$ \qquad
11. $2+4+6+8=$ \qquad \vdots
12. $2+4+6+8+\ldots+2 n=$ \qquad (Make a guess here based on examples above in terms of n.)

If we would like to prove the above conjecture using mathematical induction then let $P(n)$ denote the statement above and answer the questions below.

1. What is the statement $P(n)$ which needs to be proved?
\square
2. What is the inductive hypothesis?
\square
3. What do you need to prove in the inductive step ?
\square
