\qquad

Show all work clearly and in order, and circle your final answers. Justify your answers algebraically whenever possible; when you do use your calculator, sketch all relevant graphs and write down all relevant mathematics. You have 15 minutes to take this 15 point quiz.

1. (5 points) (a) If A and B are two sets then $A \cap(A \cup B)=$ \qquad (1 point)
(b-i) For each of the following sets, determine whether 3 is an element of that set (answer with Y or N in front of the 'dash').
(a) $\{3,3\}$ -
(b) $\{\{\{3\}\},\{3\}\}$ -
(c) $\{\{\{3\}\}\}$ -
(d) $\{3,\{3\}\}$ -
(b-ii) For each of the above sets, determine whether $\{3\}$ is a subset of that set (answer Y or N). (a)-
(b)-
(c)-
(d)-
2. (5 points) (a) Consider the following mapping f over domain and co-domain $\{1,2,3,4\}$: $f(1)=2 ; f(2)=1 ; f(3)=3 ; f(4)=3$. ($1+1+3$ points)

Property	Yes/No	If no, a very brief example of why not
f is one-to-one		
f is onto		
$\mathbf{f} \circ \mathbf{f}$ is a bijection		

3. (5 points) For the series $3, \frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32} \ldots$. If $T(1)=$ the first term $=3$, then, find expression for the $i^{t h}$ term $T(i)$ in the series (2 points). Also, using find the sum of the first n terms i.e. $S(n)=\sum_{i=1}^{n} T(i)$ using the formula for the sum of a geometric progression which is given by, $S(n)=\sum_{i=0}^{n} a r^{i}=\frac{a\left(1-r^{n+1}\right)}{(1-r)}(3$ points $)$.
